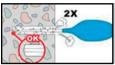
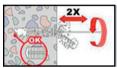

СДЕЛАНО В РОССИИ

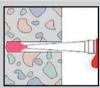

Пробурите отверстие соответствующего диаметра и соответствующей глубины.

При сверлении отверстия алмазной коронкой необходимо нанесение шероховатостей на стенки отверстия.


Способ очистки отверстия

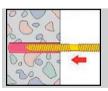
Начните продувать сжатым воздухом от дна отверстия 2 раза или ручным насосом минимум 4 раза.

Для отверстий глубиной более 200 мм необходимо продувать только сжатым воздухом под давлением.

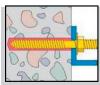

Прочистите отверстие проволочной щеткой соответствующего размера минимум два раза от дна отверстия.

Диаметр проволочной щетки равен диаметру отверстия.

Окончательно продуйте сжатым воздухом от дна отверстия 2 раза или ручным насосом минимум 4 раза.


Заполнение отверстия клеевым составом

Перед инъецированием состава обязательно смешайте состав в смесительной насадке. Путем последовательного нажатия пистолета выдавите первый объем состава в сторону.


Начните выдавливать с нижней или задней части очищенного отверстия, заполните отверстие примерно на треть клеевым составом. Медленно извлеките смесительную насадку из заполненного отверстия, чтобы избежать создание воздушных карманов.

Установка арматуры/шпильки

Аккуратно вращая, против часовой стрелки, вставляйте анкерную шпильку или арматуру, до касания со дном отверстия. При правильной установке некоторое количество клеевого состава вытечет наружу.

ВАЖНО: анкер должен быть установлен в течение максимального времени твердения клея (см. условия применения).

Во время набора прочности составом химического анкера, анкерная шпилька или арматура не должна смещаться или нагружаться.

000 «ОКГРУПП» ИНН 5258146934 ОГРН 1195275055447 г. Нижний Новгород, ул. 50-летия Победы 18 8 (800)-101-2252; www.okgnn.ru; info-ak@okgnn.ru;

СДЕЛАНО В РОССИИ

Химический анкер ТЕ70

В соответствии с СП 513.1325800.2022, ГОСТ Р 58387-2019, ГОСТ Р 58429-2019

Наименование: Двухкомпонентный химический анкер на основе эпоксидной смолы

Код товара: ТЕ70

Производитель: ООО «ОКГРУПП», Россия, г. Нижний Новгород, ул. 50-летия Победы 18

Сбалансированное решение для применения во влажных отверстиях и температурах окружающей среды не ниже 0° С. Состав не содержит стирола, тем самым обеспечивая комфортные условия при проведении монтажных работ внутри помещений.

Базовые материалы

- ◆ Бетон сжатая (бетон без трещин)
- Натуральный и искусственный камень
- ♦ Твердые скальные породы
- Кладочные материалы

Идеально подходит для:

- крепления монтажных систем
- крепления инженерного оборудования
- крепления конструкций и оборудования, рассчитанных на применение в диапазоне средних статических нагрузок

Условия применения

Температура окружающей среды	Мах время корректировки положения стержня	Міп время набора прочности (70%)	Міп время набора прочности (100%)
40°C	12 мин.	8 ч.	16 ч.
от 20°С до 39°С	25 мин.	12 ч.	24 ч.
от 10°С до 19°С	90 мин.	18 ч.	36 4.
от 0°С до 9°С	7. 2	48 ч.	96 4.

Примечание

Данные по минимальному времени набора прочности указаны только для сухого материала основания.

Для полного набора прочности температура основания должна быть не менее $\mathrm{O}^*\mathrm{C}.$

Указано минимальное время набора прочности. Реальное время набора прочности превышает минимальное и зависит от конкретных условий на строительной площадке.

000 «ОКГРУПП» ИНН 5258146934 ОГРН 1195275055447 г. Нижний Новгород, ул. 50-летия Победы 18

8 (800)-101-2252; www.okgnn.ru; info-ak@okgnn.ru;

СДЕЛАНО В РОССИИ

Технические характеристики ТЕ70

Параметры	Показатели
Консистенция	тиксотропная паста
Цвет	красный
Плотность смеси при температуре 20 °C, г/см3	1,32 ± 0,05
Мин. / макс. температура воздуха при нанесении, °C	0 / +40
Мин. / макс. температура эксплуатации, °С	-40 / +40

Объем	500 мл
Название	OKF FN 500
Система подачи	пистолет-дозатор

Расчетные нагрузки для шпилек в соответствии с СП 513.1325800.2022

Сжатая зона бетона	M8	M10	M12	M16	M20	M24
Вырыв, Nrd (кН)	10,4	16,5	23,9	44,5	59,9	82,2
Срез, Vr. d (кН)	6,16	9,8	14,2	26,4	41,2	59,2

Параметры установки шпильки в бетон

Диаметр отверстия в бетоне (мм)	d ₀	10	12	14	18	22	28
Глубина установки (мм)	hef	80	90	110	125	170	210
Минимальная толщина бетона (мм)	hmin	110	120	140	160	210	260
Минимальное осевое расстояние (мм)	Smin	40	50	60	<i>7</i> 5	90	115
Минимальное расстояние до кромки бетона (мм)	Cmin	40	45	45	50	55	60
Максимальный момент затяжки (Нм)	Tmax	10	20	40	80	150	200

Расход химического анкера для шпильки

Диаметр шпильки (мм)	M8	M10	M12	M16	M20	M24
Диаметр отверстия в бетоне (мм)	10	12	14	18	22	28
Расход анкера на 1 см отверстия (мл)	0,8	1,□	1,2	1,6	2,2	3,9
Стандартная глубина отверстия (мм)	80	90	110	125	170	210
Расход анкера на стандартное отверстие (мл)	60	0	13	20	37	81

Все данные указаны для одиночного анкера, установленного в сухих отверстиях, выполненных ударным сверлением в бетоне В25 со шпилькой классом прочности 4.8. При использовании иных параметров установки (алмазное бурение, водонасыщенные отверстия, отличные от указанных классы бетона, глубины установки и прочее) необходим индивидуальный расчет инженеров ОКГРУПП.

СДЕЛАНО В РОССИИ

Расчетные нагрузки для арматуры в соответствии с СП 513.1325800.2022

Сжатая зона бетона	Ø 8	Ø 10	ø12	ø14	ø 1 6	ø 20	ø 25
Вырыв, NRd (кН)	9,5	1 <i>7</i> ,3	24,9	33,8	37,7	59,9	82,2
Срез, VRd (кН)	8,04	12,6	18,1	24,6	32,2	50,3	78,5

Параметры установки арматуры в бетон

Диаметр арматуры (мм)	d	ø8	ø 10	Ø12	Ø14	ø16	ø 20	Ø 25
Диаметр отверстия в бетоне (мм)	d _o	12	14	16	18	20	25	30
Глубина установки, (мм)	hef	80	90	110	125	125	170	210
Минимальная толщина бетона (мм)	hmin	110	120	140	160	165	220	275
Минимальное осевое расстояние (мм)	Smin	40	50	60	70	80	100	125
Минимальное расстояние до кромки бетона (мм)	Cmin	40	45	45	50	50	65	70

Расход химического анкера для арматуры

Диаметр арматуры (мм)	Ø8	Ø 10	ø12	ø14	Ø16	ø20	Ø25
Диаметр отверстия в бетоне (мм)	12	14	16	18	20	25	30
Расход анкера на 1 см отверстия (мл)	0,8	1	1,2	1,5	1,7	2,8	4,7
Стандартная глубина отверстия (мм)	80	90	110	125	125	170	210
Расход анкера на стандартное отверстие (мл)	8	11	16	21	24	47	99

Все данные указаны для одиночного анкера, установленного в сухих отверстиях, выполненных ударным сверлением в бетоне B25 с арматурой A400. При использовании иных параметров установки (алмазное бурение, водонасыщенные отверстия, отличные от указанных классы бетона, глубины установки и прочее) необходим индивидуальный расчет инженеров ОКГРУПП.

Соблюдайте данные инструкции от применению и обесопасти. Перед применением проверьте срок годности (указывается в приложенном паспорте изделия) - не пользуйтесь просроченным адгезиюм. Также необходимо проверить соответствие маркировки, указанной на картридже, маркировке в проектной документации. Маркировка анкера указывается на боковой поверхности картриджей.